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Abstract

We take the perspective of a microgrid that has installed distribution energy resources (DER)
in the form of distributed generation with combined heat and power applications. Given uncertain
electricity and fuel prices, the microgrid minimizes its expected annual energy bill for various ca-
pacity sizes. In almost all cases, there is an economic and environmental advantage to using DER
in conjunction with demand response (DR): the expected annualized energy bill is reduced by 9%
while CO2 emissions decline by 25%. Furthermore, the microgrid’s risk is diminished as DER may
be deployed depending on prevailing market conditions and local demand. In order to test a policy
measure that would place a weight on CO2 emissions, we use a multi-criteria objective function that
minimizes a weighted average of expected costs and emissions. We find that greater emphasis on
CO2 emissions has a beneficial environmental impact only if DR is available and enough reserve
generation capacity exists. Finally, greater uncertainty results in higher expected costs and risk
exposure, the effects of which may be mitigated by selecting a larger capacity.

Keywords: Distributed generation, demand response, CO2 emissions, stochastic optimization

1 Introduction

Distributed energy resources (DER) such as distributed generation (DG), combined heat and power
(CHP) equipment, batteries, and other on-site storage devices provide an alternative means for com-
mercial and industrial sites to meet their energy service demands. Indeed, rather than relying on
central-station electricity generation and purchase of natural gas for heating, they may generate and
store electricity on-site when economical and recover and store waste heat in the process. Consequently,
it may be possible to improve system energy efficiency, reduce CO2 emissions, and lower energy costs
via DER. However, unlike passive reliance on a centralized system, the optimal adoption and operation
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of DER requires active control algorithms and technology in order to coordinate the various components
of the system along with external energy purchases and deployment of demand response. Previous work
([7] and [3]) has demonstrated how DER comprising heat and electrical storage devices may be adopted
and operated optimally over a test year in various building types under deterministic electricity and
fuel prices. Recent work has shown how to use a similar formulation for handling demand response and
incorporation of risk under uncertain prices ([8] and [2], respectively). In this paper, we aim to bridge the
gap between these two approaches by performing operational analysis of DER under uncertain energy
prices with demand response and CO2 minimization as part of the objective function in addition to cost
minimization.

The structure of this paper is as follows:

• Section 2 formulates the problem and outlines the simulation algorithm to solve it

• Section 3 presents the data used in the numerical examples

• Section 4 illustrates how cost and CO2 emissions are affected by demand response and DER under
uncertain electricity and natural gas prices

• Section 5 summarizes the findings of this paper and offers directions for future research

2 Problem Formulation

Since the objective is to minimize the expected discounted cost of meeting energy loads over a test year,
it is first necessary to determine the DER equipment that will be installed. A deterministic approach
has been used in the past by solving a mixed-integer linear program (MILP) that includes amortized
capital costs for the on-site equipment (see [4], [5], [7], and [3]). Here, we fix the capacity installed at
various levels and run a stochastic dynamic program (SDP) to minimize the expected discounted cost
of meeting energy loads. The objective function in the SDP may be modified to consist of a weighted
average of costs and CO2 emissions (see [8]).

In order to find optimal DER adoption under stochastic prices, however, a stochastic programming
approach needs to be used, possibly employing Benders’ decomposition. Here, we take the approach
of [2] and [6] in solving the optimal DER operational problem under uncertainty for various levels of
installed capacity. We assume that the microgrid is on a real-time pricing (RTP) tariff, which means
that it must buy all energy at the daily average price. No demand charges or hedging opportunities are
considered.

2.1 Nomenclature

Denoting each day as t = 1, . . . , T and each DER generator as i = 1, . . . , I, we define the parameters for
this program as follows:

• EDemandt: electricity demand during day t (in MWhe)

• HDemandt: heat demand during day t (in MWh)

• ∆t = 1
T : length of each time step (in years)

• r: discount rate per annum

• h: number of hours per day

• EPt: wholesale electricity price during day t (in $/MWhe)

• ETDCharget: electricity transmission and distribution (T&D) charge during day t (in $/MWhe)
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• FPt: wholesale natural gas price during day t (in $/MMBTU)

• FTDCharget: natural gas T&D charge during day t (in $/MWh)

• EEffi: energy-conversion efficiency of DER generator i (in MWhe/MWh)

• PPEEff : energy-conversion efficiency of central power plant (in MWhe/MWh)

• HRi: amount of useful heat produced by DER generator i per MWhe (in MWh/MWhe)

• HEff : energy-conversion efficiency for natural gas to heat (in MWh/MWh)

• MaxPi: rated power capacity of DER generator i (in MWe)

• CapCosti: capacity cost of DER generator i (in $/MWe)

• OMFixi: fixed O&M cost of DER generator i (in $/(MWe year))

• Lifei: lifetime of DER generator i (in years)

• Annuityi: annuity factor for DER generator i

• OMV ari: variable O&M cost of DER generator i (in $/MWhe)

• NGCRate: CO2 emissions rate of natural gas (in tCO2/MWh)

• UCRate: CO2 emissions rate of utility-provided electricity (in tCO2/MWhe)

• Φ = 3.412: conversion factor from MMBTU to MWh for fuel (in MMBTU/MWh)

• EDRCost: variable cost of reducing electricity demand (in $/MWhe)

• HRDCost: variable cost of reducing heat demand (in $/MWh)

• MaxEDR: maximum fraction of electricity demand to be met by demand response during any
day

• MaxHDR: maximum fraction of heat demand to be met by demand response during any day

• DGInvi ∈ Z+: number of units of DER generator i adopted

• DNCost: annualized deterministic energy bill of a microgrid without DER equipment installed
(in $)

• DNEmissions: annual CO2 emissions of a microgrids without DER equipment installed (t CO2)

• Ψt ≡ {EPt, FPt}: set of stochastic state variables at time t

The corresponding decision variables are as follows:

• Geni,t ≥ 0: operating level of DER generator i during day t (in MWhe)

• DGHeatt ≥ 0: heat load met from DER generation during day t (in MWh)

• NGHeatt ≥ 0: heat load met from natural gas purchases during day t (in MWh)

• EPurchaset ≥ 0: electricity purchased from utility during day t (in MWhe)

• EDResponset ≥ 0: electricity demand response during day t (in MWhe)

• HDResponset ≥ 0: heat demand response during day t (in MWh)

• Ξt ≡ {Geni,t, DGHeatt, NGHeatt, EPurchaset, EDResponset, HDResponset}: set of all deci-
sion variables at time t
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2.2 Stochastic Dynamic Program

Using 0 ≤ α ≤ 1, the objective function is a weighted average of the annualized costs and CO2 emissions.
If we allow for stochastic electricity and natural gas prices, then Vt(Ψt) is the minimized value function
to go (consisting of the weighted expected discounted operating cost and CO2 emissions to go) at the
start of day t given current energy prices. In the SDP, we take the DER technologies as fixed and
dispatch them optimally under uncertainty. Their amortized investment cost is added to the minimized
operating cost at t = 1. For convenience, we let Costt(Ξt; Ψt) be the period-t weighted operating cost
and Emissionst(Ξt; Ψt) be the corresponding CO2 emissions:

Costt(Ξt; Ψt) ≡
I∑

i=1

Geni,tOMV ari +
I∑

i=1

Geni,t
(FPtΦ + FTDCharget)

EEffi
(1)

+EPurchaset(EPt + ETDCharget) + NGHeatt
(FPtΦ + FTDCharget)

HEff

+EDRCost EDResponset + HDRCost HDResponset

Emissionst(Ξt; Ψt) ≡
I∑

i=1

Geni,t
NGCRate

EEffi
+ NGHeatt

NGCRate

HEff
+ EPurchasetUCRate (2)

Thus, the SDP to be solved from any day t is:

Vt(Ψt) = min
Ξt

α

DNCost
Costt(Ξt; Ψt) +

(1− α)er∆t

DNEmissions
Emissionst(Ξt; Ψt) (3)

+e−r∆tEΨt [Vt+1(Ψt+1)]

subject to the following terminal condition and constraints:

VT (ΨT ) = min
ΞT

α

DNCost
CostT (ΞT ; ΨT ) (4)

+
(1− α)er∆t

DNEmissions
EmissionsT (ΞT ; ΨT )

Geni,t ≤ DGInviMaxPih ∀ i, t (5)

EDResponset +
I∑

i=1

Geni,t + EPurchaset = EDemandt ∀ t (6)

DGHeatt ≤
I∑

i=1

HRiGeni,t ∀ t (7)

HDResponset + DGHeatt + NGHeatt = HDemandt ∀ t (8)

EDResponset ≤ MaxEDR EDemandt ∀ t (9)

HDResponset ≤ MaxHDR HDemandt ∀ t (10)

presented at IAEE’s Rio 2010 International Conference, June 6-9, 2010, InterContinental Rio Hotel – Rio de Janeiro, Brazil



Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty 5

2.3 Energy Price Models

We assume that the logarithms of the deseasonalized electricity and natural gas prices, Xt and Yt,
respectively, evolve according to correlated mean-reverting Ornstein-Uhlenbeck (OU) processes, i.e.,

dXt = κX(θX −Xt)dt + σXdSt (11)

dYt = κY (θY − Yt)dt + ρσY dSt +
√

1− ρ2σY dWt (12)

Here, for process k, θk is the long-term mean, κk is the rate of mean reversion, σk is the annualised
volatility, and ρ = ρXY

1
2

(κX+κY )√
κXκY

, where ρXY is the instantaneous correlation coefficient between {Xt, t ≥
0} and {Yt, t ≥ 0}. Furthermore, {St, t ≥ 0} and {Wt, t ≥ 0} are independent standard Brownian motion
processes. Thus, the natural logarithms of the electricity and natural gas prices are:

ln EPt = Xt + fX
t (13)

ln FPt = Yt + fY
t (14)

where fk
t =

∑[s/2]
`=1

(
γk
1` cosλ`t + γ∗k1` sinλ`t

)
+

∑[s′/2]
`=1

(
γk
2` cos λ

′
`t + γ∗k2` sin λ

′
`t

)
is the seasonality func-

tion that detects weekly and annual trends for k = X, Y , t = 1, . . . , T , s = 7, s′ = 365, and

[a/2] =
{

a/2 if a is even
(a− 1)/2 otherwise (15)

We use the procedure described in [1] for estimating the parameters in both the OU processes and the
seasonality functions.

The OU processes in Equations 11 and 12 may be simulated as follows using two independent standard
normal random variables εX and εY :

Xt+1 = Xt + κX(θX −Xt)∆t + σXεX

√
∆t (16)

Yt+1 = Yt + κY (θY − Yt)∆t + σY ρεX

√
∆t +

√
1− ρ2σY εY

√
∆t (17)

2.4 Solution Procedure

In order to solve the SDP in Equations 3 to 8, we proceed via simulation by first generating N sample
paths for the electricity and natural gas prices. Next, we calculate the expected minimized objective
function in the terminal time step, T , for each sample path. Finally, we work backwards recursively along
each sample path to solve the constrained minimization problem for each t until we reach the first time
step. Taking the mean of the value functions at t = 1 gives us the expected minimized value function
for the microgrid to which is added the amortized DER capital cost. The algorithm is summarized in
Figure 1.

For a given level of α, the minimized objective function value for various levels of installed DER
capacity may be compared with and without the availability of demand response (DR). Features to
note will be the expected values and variances of the objective functions. As α is varied, the objective
function puts different weights on minimizing the cost and CO2 emissions. After running the SDP for
different values of α, an efficient frontier is created that indicates the tradeoff between economic and
environmental objectives. By allowing for DR, we can show how the efficient frontier is altered.

3 Data

Since we assume decisions are made daily over a test year, T = 365 and ∆T = 1
365 . Furthermore, the

discount rate is r = 0.10.
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1 Generate Ψ(n)
t , t = 1, . . . , T , n = 1, . . . , N

2 V
(n)
T (Ψ(n)

T ) = min
Ξ

(n)
T

{
αCost

(n)
T (Ξ

(n)
T ;Ψ

(n)
T )

DNCost + (1−α)Emissions
(n)
T (Ξ

(n)
T ;Ψ

(n)
T )

e−r∆tDNEmissions

}
s.t. Equations 5 to 10,

n = 1, . . . , N ;

3 For t = T − 1, . . . , 1

4 For n = 1, . . . , N

5 V
(n)
t (Ψ(n)

t ) = min
Ξ

(n)
t

{
αCost

(n)
t (Ξ

(n)
t ;Ψ

(n)
t )

DNCost + (1−α)Emissions
(n)
t (Ξ

(n)
t ;Ψ

(n)
t )

e−r∆tDNEmissions

}
+e−r∆tV

(n)
t+1(Ψ

(n)
t+1)

s.t. Equations 5 to 10;
6 End

7 End

8 Min Function =
∑N

n=1 V
(n)
1 (Ψ

(n)
1 )

N ;

Figure 1: Solution Procedure for SDP

3.1 Energy Prices

We use electricity and gas prices for San Francisco during the years 2006 and 2007 in order to estimate
the parameters for our seasonal and mean-reverting processes. The electricity and natural gas price
data are available from the California Independent System Operator (http://www.caiso.com) and the
Pacific Gas and Electric Company (http://www.pge.com), respectively. In deseasonalizing the data, we
first obtain the deterministic seasonality functions during 2006 and 2007 for the natural logarithms of
the prices indicated in Figure 2. Next, we estimate parameters for the OU processes via ordinary least-
squares (OLS) regression on the lagged residuals (see Table 1). In addition, X1 ≡ ln EP1 − fX

1 = 3.82,
Y1 ≡ ln FP1 − fY

1 = 2.08, and ρ = 0.33.
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Electricity
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Figure 2: Seasonality Functions for Natural Logarithms of Electricity and Natural Gas Prices during
2006 and 2007

Simulated sample paths for the electricity and natural gas prices during 2006 are shown in Figures 3
and 4. As indicated, it is usually not economical to produce electricity on-site when CHP applications do
not exist. We also perform sensitivity analyses to the volatility and correlation coefficient. The constant
T&D adders are ETDCharget = 100 and FTDCharget = 20. Unless otherwise stated, we will base our
subsequent numerical examples on 2006 simulated prices.
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Figure 3: Actual and Simulated Daily Electricity Prices for 2006
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Figure 4: Actual and Simulated Daily Natural Gas Prices for 2006

presented at IAEE’s Rio 2010 International Conference, June 6-9, 2010, InterContinental Rio Hotel – Rio de Janeiro, Brazil



Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty 8

Process, k θk κk σk

X 3.84 110.37 3.33
Y 1.92 53.00 1.10

Table 1: Parameter Estimates for OU Processes

3.2 Energy Loads

The load data are taken from a northern California nursing home and are plotted in Figure 5. Mean
daily demands are 15.79 MWhe and 15.62 MWh for electricity and heat, respectively, while the standard
deviations are 1.34 MWhe for electricity and 2.37 MWh for heat. Furthermore, the correlation coefficient
between the two is -0.91 because heat demand usually peaks during winter months when the electrical
demand for cooling is at its lowest. This negative correlation between electricity and heat demand could
limit the potential for CHP applications.
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Figure 5: Daily Electricity and Heat Demands at a Northern California Nursing Home

3.3 DER Equipment

We assume that the only available technology is discrete units of 0.10 MWe DG engines with CHP
capability that can operate without failure throughout the year. The associated cost and performance
parameters are: HR = 1.74, CapCost = 3000000, EEff = 0.26, OMFix = 0, PPEEff = 0.35,
OMV ar = 20, HEff = 0.8, NGCRate = 0.1836, and UCRate = 0.55.

3.4 Demand Response

We assume that EDRCost = 60, HDRCost = 30, MaxEDR = 0.10, and MaxHDR = 0.20.

4 Numerical Examples

We assume three price scenarios (deterministic, stochastic, and high electricity price volatility), and do
three cases for each: do nothing (DN), DER without DR (ND), and DER with DR (DER). For the two
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cases in each scenario where DER equipment is installed, we consider three capacity levels: 0.10 MWe,
0.30 MWe, and 0.50 MWe. The annualized capital cost of DG equipment is $352379 per MWe, which
is added to any operational costs to determine the total annual energy bill. All stochastic scenarios use
N = 1000 sample paths.

4.1 Deterministic Prices

We run the model with σX = 0 and σY = 0 for α = 1, 2
3 , and 1

3 , where decreasing α places greater
emphasis on minimizing CO2 emissions. The results are indicated in the form of an efficient frontier
between the two objectives (see Figure 6). In the DN case, the annual energy bill is $1.1 million with
4480 tons of CO2 produced. Compared to this benchmark, almost any ND or DER case dominates
from both economic and environmental perspectives. In particular, for the ND cases, the 0.50 MWe

unit provides a nearly 18% reduction in the CO2 emissions (albeit at a slightly higher cost), while the
0.30 MWe unit delivers a 3% reduction in the annualized energy bill along with CO2 emissions that are
14% lower than in the DN case. The 0.10 MWe unit provides modest savings in both criteria due to its
limited size, which cannot leverage significant differences in the electricity and heat prices to produce
enough energy on-site when warranted. Varying α for the ND cases has almost no impact on the output
as without DR, there is hardly any scope to produce more heat on-site.

Efficient Frontier

1.00E+06

1.02E+06

1.04E+06

1.06E+06

1.08E+06

1.10E+06

1.12E+06

1.14E+06

1.16E+06

3.00E+0

3

3.20E+0

3

3.40E+0

3

3.60E+0

3

3.80E+0

3

4.00E+0

3

4.20E+0

3

4.40E+0

3

4.60E+0

3

Annual Emissions (t CO_2)

A
n

n
u

a
li

z
e

d
 C

o
s

t 
($

)

DER 500 kW ND 500 kW DN ND 100 kW DER 100 kW ND 300 kW DER 300 kW

Figure 6: Efficient Frontier Between Cost and CO2 Emissions Minimization with Deterministic Energy
Prices

Once DR is allowed, further savings in both the cost and CO2 emissions are achieved. Even the 0.10
MWe unit provides cost savings of 8% along with a CO2 emissions reduction of nearly 18%. However, it
is outperformed by the larger 0.50 MWe unit in the environmental criterion and by the 0.30 MWe unit
in terms of both cost (9% lower than in the DN case) and emissions (25% lower than in the DN case).
Furthermore, as α is varied, we observe a clearer tradeoff between the two objective function criteria:
greater emphasis on the environmental criteria duly reduces CO2 emissions but at a slightly higher cost.

4.2 Stochastic Prices

Here, we use the energy price parameters given in Table 1 for all cases. From the efficient frontier between
cost and CO2 minimization (see Figure 7), we observe a similar pattern as in Figure 6: the large unit is
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the most environmentally attractive one, whereas the medium unit minimizes expected cost. Again, DR
is crucial in reducing both costs and emissions. The main difference here is that due to uncertain energy
prices, expected costs are slightly higher, especially for the small DG unit, which has less leverage to
respond to adverse market conditions.

Efficient Frontier
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Figure 7: Efficient Frontier Between Cost and CO2 Emissions Minimization with Stochastic Energy
Prices

In order to examine the risk implications of DER equipment under uncertainty, we next compare the
expected minimized cost with the 95%-level conditional value-at-risk (cVaR), which is the conditional
expected cost given that the cost lies in the upper 5% of the possible outcomes. This is also known as
the expected tail loss (ETL). The results in Figure 8 indicate that while the large DG unit in the ND
case is not very effective at managing risk, both the small and medium units control costs well. In fact,
the cVaR for the medium DG unit is $1.1 million, which is even less than the expected cost in the DN
case. Once DR is allowed, the risk management potential of DER improves even further: in the extreme
case, the 95% cVaR with the medium DG unit is $1.03 million. Another finding here is that as greater
emphasis is placed on minimizing CO2 emissions, the cVaR increases perceptibly, an effect that was not
noticeable in the ND cases.

4.3 Stochastic Prices with High Electricity Price Volatility

In this price scenario, we double the instantaneous volatility of the natural logarithm of the deseasonalized
electricity price process, σX , ceteris paribus. Consequently, higher electricity prices are more likely to
occur, which results in higher expected minimized costs (see Figure 9). Besides this change, the pattern
observed in Figure 7 is not affected since CO2 emissions do not change much except for the large DG
unit. Indeed, since it has spare capacity to produce more electricity, there is more on-site generation
in response to higher electricity prices without a corresponding increase in heat capture. As on-site
generation is more carbon-intensive than via the macrogrid, CO2 emissions increase.

The pattern for risk management in Figure 10 is also similar to the one in Figure 8 except that
the cVaR is perceptibly higher here. In the ND cases, the cVaR increases by between 1.3% (for the
large unit) and 3.5% (for the small unit) as higher electricity prices occur more frequently. Here, the
large DG unit is relatively less affected because it has enough reserve capacity to run during periods of
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Cost and cVaR
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Figure 8: Tradeoff Between Cost and Risk with Stochastic Energy Prices
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Figure 9: Efficient Frontier Between Cost and CO2 Emissions Minimization with High Electricity Price
Volatility
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high electricity prices. Consequently, the large DG unit now outperforms the small one in terms of risk
management. For the cases with DR, the increase in the cVaR is more modest: only 2% for the medium
DG unit, 3.3% for the small one, and 1% for the large one. The availability of DR provides greater
flexibility to control costs, although emphasis on CO2 emissions minimization increases risk exposure.

Cost and cVaR
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Figure 10: Tradeoff Between Cost and Risk with High Electricity Price Volatility

5 Conclusions

Microgrids that employ DG with CHP applications potentially provide a more sustainable pathway to
capacity expansion. Indeed, the waste heat from on-site generation can be captured and partially used
to offset heat loads, thereby reducing the need for natural gas purchases. In this paper, we illustrate not
only the economic and environmental benefits of microgrids, but also their risk management capability as
energy prices are allowed to be stochastic. For almost all cases, DER dominates the baseline case of doing
nothing in terms of lower expected energy bills, reduced CO2 emissions, and lower cVaR. Furthermore,
the availability of DR makes DER more attractive, especially when the electricity price becomes more
uncertain.

Via a multi-criteria objective function, we also examine the prospect of minimizing CO2 emissions
directly. This leads to an efficient frontier, in which the large DG unit performs the best in terms of the
environmental aspect, while the medium DG unit continues to have the lowest expected cost. Again, the
availability of DR reduces both cost and emissions, while greater emphasis on minimizing CO2 emissions
increases not only the microgrid’s expected cost, but also its risk exposure, especially in a scenario with
higher electricity price volatility.
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